
ISSN 1995-0802, Lobachevskii Journal of Mathematics, 2016, Vol. 37, No. 3, pp. 255–260. c© Pleiades Publishing, Ltd., 2016.

Join Decomposition Based on Fragmented Column Indices

E. Ivanova* and L. B. Sokolinsky**

(Submitted by A. V. Lapin)
South Ural State University (National Research University),

prospekt Lenina 76, Chelyabinsk, 454080 Russia
Received March 16, 2015

Abstract—The paper is devoted to the issue of decomposition of the join relational operator with
the aid of distributed column indices. Such decomposition allows one to utilize the modern many-
core accelerators (GPU or Intel Xeon Phi) to speed up the query execution for very large databases.
Column indices are the new kind of index structures, which exploits “key-value” technics. The paper
describes the methods of column index fragmentation based on domain intervals. This technic allows
organizing the parallel query processing without exchanges. All column index fragments are stored
in main memory in compressed form to conserve space. This approach can be implemented as a
coprocessor for relational database systems. The database coprocessor is able to perform resource-
intensive operations much more faster than a conventional DBMS.

DOI: 10.1134/S1995080216030136

Keywords and phrases: Very large databases, parallel query processing, column indices,
domain-interval fragmentation.

1. INTRODUCTION

Nowadays, human scientific and practical activities create the new challenges that demand big data
processing. According to IDC study [1], the amount of digital data is doubling in size every two years,
and by 2020 the digital universe—the amount of digital data created and replicated—will reach 44
zettabytes, or 44 trillion gigabytes. In 2013, only 22% of the information in the digital universe would
be a candidate for analysis (useful if it were tagged) and less than 5% of that was actually analyzed. By
2020, the useful percentage could grow to more than 35%, mostly because of the growth of data from
embedded systems.

Actually, the only way to process efficiently big data is using the parallel database system, which are
able to process data in parallel on the high performance system with distributed memory [2–4]. The
traditional approach for database storing is row-oriented representation. However, column-oriented
database systems have been shown to perform more than an order of magnitude better than row-oriented
database systems (“row-stores”) on analytical workloads such as those found in data warehouses,
decision support, and business intelligence applications. The elevator pitch behind this performance
difference is straightforward: column-stores are more I/O efficient for read-only queries since they
only have to read from disk (or from memory) those attributes accessed by a query [5]. Column-
oriented databases are particularly well suited for compression because data of the same type is stored
in consecutive sections. This makes it possible to use compression algorithms specifically tailored to
patterns that are typical for the data type [6].

In recent years, more and more many-core processors are superseding sequential ones. Increasing
parallelism, rather than increasing clock rate, has become the primary engine of processor performance
growth, and this trend is likely to continue. Particularly, today’s GPUs (Graphic Processing Units) and
Intel’s MIC (Many Integrated Cores), greatly outperforming traditional CPUs in arithmetic throughput

*E-mail: Elena.Ivanova@susu.ru
**E-mail: Leonid.Sokolinsky@susu.ru

255

256 IVANOVA, SOKOLINSKY

and memory bandwidth, can use hundreds of parallel processor cores to execute tens of thousands of
threads [7]. Recent trends in new hardware and architectures have gained considerable attention in
the database community. Processing units such as GPU or MIC provide advanced capabilities for
massively parallel computation. Database processing can take advantage of such units not only by
exploiting this parallelism, e.g., in query operators (either as task or data parallelism), but also by
offloading computation from the Central Processing Unit (CPU) to these coprocessors, saving CPU
time for other tasks [8]. The many integrated cores of the Xeon Phi make this hardware accelerator a
natural computing platform for an in-memory database engine or server. The database tables reside in
the memory space of the MIC thus supporting fast in-memory database applications [9]. Main memory
as the primary storage location is becoming increasingly attractive as a result of the decreasing cost/size
ratio [6]. Main Memory Database (MMDB) eliminates disk access by storing and manipulating entire
database in main memory. For performance-significant systems MMDB offer very low response time
and very high throughput [10]. According to Gartner’s 2013 Hype Cycle for Emerging Technologies
report, in-memory database management system have 2 to 5 years until widespread adoption [11].

According to this, the problem of developing new efficient methods of parallel database processing
in main memory on modern compute clusters with manycore accelerators using column-oriented
representation and data compression is important. To meet this goal, we offer a special type of
index structures called distributed column indices. Distributed column indices allow to perform
a decomposition of relational operations, which admits the efficient parallel execution of them on
computing cluster system, equipped with manycore accelerators. In this paper, we consider the
decomposition for natural join. We will be using the notation from [12] for denoting the relation operators.
The symbol ◦ we will use to denote the operation of concatenation of the tuples.

The paper is organized as follows. Section 2 introduces the notion of column index. Section 3
presents the definition of domain-interval fragmentation of column index. Section 4 describes a method
of decomposing natural join of two relations based on domain-interval fragmentation of column indices
built for the join attributes. The theorem about correctness of this decomposition method is proved.
Section 5 summarises the results and outlines directions for future research.

2. COLUMN INDEX

Let R (A∗, B1, . . . , Bu) be the R relation with A primary key and the following attributes:
B1, . . . , Bu. Tuples of R have length of u + 1 and form of (a, b1, . . . , bu), where a ∈ Z≥0 and ∀j ∈
{1, . . . , u}

(
bj ∈ DBj

)
. Here, DBj is the domain of attribute Bj . Let r.Bj denote a value of attribute

Bj . Let r.A denote a value of the primary key of tuple r: r = (r.A, r.B1, . . . , r.Bu). The primary
key of relation R has the property: ∀r′, r′′ ∈ R (r′ �= r′′ ⇔ r′.A �= r′′.A). Define tuple address as a
primary key value of the tuple. To get the tuple by its address, we will use &R dereferencing function:
∀r ∈ R (&R(r.A) = r).

Definition 1. Let R (A∗, B, . . .) , T (R) = n be given. Let a linear order be defined on set DB. The
column index IR.B for attribute B of relation R is an ordered relation IR.B(A∗, B), which satisfies the
following requirements:

T (IR.B) = n, πA (IR.B) = πA (R) ; (1)

∀x1, x2 ∈ IR.B (x1 ≤ x2 ⇔ x1.B ≤ x2.B) ; (2)

∀r ∈ R (∀x ∈ IR.B (r.A = x.A ⇒ r.B = x.B)) . (3)

Condition (1) means that the sets of primary keys of column index and indexed relation are equal.
Condition (2) means that index elements are sorted in ascending order of values of attribute B.
Condition (3) means that attribute A of an index element contains the address of tuple of R, which
has the same value of B attribute as the corresponding element of column index has.

From the intensional point of view, the column index IR.B is a table with two columns A and B (see
fig. 1). The number of rows in the column index is equal to the number of rows in the indexed table.
Column B of index IR.B contains all the values of column B in table R (including duplicates). These
values are sorted in ascending order inside column index.

The following lemma is useful for proving the correctness of decomposition of a relational operators.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 37 No. 3 2016

JOIN DECOMPOSITION BASED 257

A B

36

14

36

10

74

27

58

0

1

2

3

4

5

6

A B

10

14

27

36

36

58

74

3

1

5

2

0

6

4

R I

R.B

....

....

....

....

....

....

....

....

Fig. 1. Column index.

Lemma 1. Let relation schema R (A∗, B, . . .) be given. Let column index IR.B be defined for
relation R. Then

πB (IR.B) = πB (R) . (4)

Proof. Choose an arbitrary b ∈ DB . Let T (σB=b (R)) = k. Without loss of generality we may as-
sume that ∀r ∈ R (r.A < k ⇔ r.B = b). It follows using (1) and (3) that ∀x ∈ IR.B (x.A < k ⇔ x.B = b).
Thus T (σB=b (IR.B)) = k. Therefore (4) is true. The lemma is proven.

3. DOMAIN-INTERVAL FRAGMENTATION

Definition 2. Let a total ordering relation be defined on domain DB. Let a separation of set DB into
k > 0 nonintersecting intervals is given:

V0 = [v0; v1] , V1 = (v1; v2] , . . . , Vk−1 = (vk−1; vk] ;
v0 < v1 < . . . < vk;

DB =
k−1⋃

i=0

Vi.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5)

The function ϕDB
: DB → {0, . . . , k − 1} is called interval fragmentation function for domain DB if

the following condition holds:

∀i ∈ {0, . . . , k − 1} (∀b ∈ DB (ϕDB
(b) = i ⇔ b ∈ Vi)) . (6)

Definition 3. Let column index IR.B for relation R (A∗, B, . . .) with attribute B on domain DB. The
function

ϕIR.B
: IR.B → {0, . . . , k − 1}

is called domain-interval fragmentation function if the following condition holds:

∀x ∈ IR.B (ϕIR.B
(x) = ϕDB

(x.B)) . (7)

Define ith fragment (i = 0, . . . , k − 1) of index IR.B as follows:

Ii
R.B = {x|x ∈ IR.B ; ϕIR.B

(x) = i} . (8)

It means that the ith fragment contains tuples, which have values of attribute B from the ith domain
interval. This fragmentation is called the domain-interval fragmentation. The number of fragments
is the degree of fragmentation.

The domain-interval fragmentation has the following fundamental properties, which follow directly
from its definition:

IR.B =
k−1⋃

i=0

Ii
R.B ;

∀i, j ∈ {0, . . . , k − 1}
(
i �= j ⇒ Ii

R.B ∩ Ij
R.B = ∅

)
.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 37 No. 3 2016

258 IVANOVA, SOKOLINSKY

The following lemma is useful for proving the correctness of decomposition of a relational operators.
Lemma 2. Let a domain-interval fragmentation with degree k be given for column index IR.B

of relation R (A∗, B, . . .). Then

∀i ∈ {0, . . . , k − 1}
(
∀x ∈ IR.B

(
x ∈ Ii

R.B ⇔ x.B ∈ Vi

))
. (9)

Proof. First, letТs proof

∀i ∈ {0, . . . , k − 1}
(
∀x ∈ IR.B

(
x ∈ Ii

R.B ⇒ x.B ∈ Vi

))
. (10)

Let x ∈ Ii
R.B . It follows using (8) that ϕIR.B

(x) = i. By the (7), we have ϕDB
(x.B) = i. Hence, by

the (6), x.B ∈ Vi, it follows that (10) is true.
Second, letТs proof

∀i ∈ {0, . . . , k − 1}
(
∀x ∈ IR.B

(
x.B ∈ Vi ⇒ x ∈ Ii

R.B

))
. (11)

Let x ∈ IR.B and x.B ∈ Vi. It follows using (6) that ϕDB
(x.B) = i. By the (7), we have ϕDB

(x.B) =
ϕIR.B

(x) = i. Hence, by the (8), x ∈ Ii
R.B , it follows that (11) is true. The lemma is proven.

4. DECOMPOSITION OF NATURAL JOIN OF TWO RELATIONS

Let two relations be given:

R (A∗, B1, . . . , Bu, C1, . . . , Cv)

and

S (A∗, B1, . . . , Bu,D1, . . . ,Dw) .

Let the following two sets of column indices for attributes B1, . . . , Bu be given:

IR.B1 , . . . , IR.Bu ; IS.B1, . . . , IS.Bu .

Let the following domain-interval fragmentation with degree k be defined for all these indices:

IR.Bj =
k−1⋃

i=0

Ii
R.Bj

; (12)

IS.Bj =
k−1⋃

i=0

Ii
S.Bj

. (13)

Let

P i
j = πIi

R.Bj
.A→AR, Ii

S.Bj
.A→AS

⎛

⎝Ii
R.Bj

��
Ii
R.Bj

.Bj=Ii
S.Bj

.Bj

Ii
S.Bj

⎞

⎠ (14)

for all i = 0, . . . , k − 1 and j = 1, . . . , u. Define

Pj =
k−1⋃

i=0

P i
j . (15)

Let

P =
u⋂

j=1

Pj . (16)

Define

Q = {r ◦ (s.D1, . . . , s.Dw)|r ∈ R ∧ s ∈ S ∧ (r.A, s.A) ∈ P} . (17)

Theorem 1. π∗\A(Q) = π∗\A(R)��π∗\A(S).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 37 No. 3 2016

JOIN DECOMPOSITION BASED 259

Proof. First, let’s proof

π∗\A(Q) ⊂ π∗\A(R)��π∗\A(S). (18)

Let

(a, b1, . . . , bu, c1, . . . , cv , d1, . . . , dw) ∈ Q. (19)

The (17) implies that there exist tuples r and s such that

(a, b1, . . . , bu, c1, . . . , cv) = r ∈ R, (20)

(a′, b1
′, . . . , bu

′, d1, . . . , dw) = s ∈ S (21)

and

(r.A, s.A) ∈ P. (22)

It follows that ∃p ∈ P (p.AR = a ∧ p.AS = a′). Hence, by the (16) we get ∀j ∈ {1, . . . , u}×
(∃p ∈ Pj(p.AR = a ∧ p.AS = a′)). It follows using (15) that ∀j ∈ {1, . . . , u}(∃i ∈ {0, . . . , k − 1} ×
(∃p ∈ P i

j (p.AR = a ∧ p.AS = a′))). Thus since (12)–(14), it follows that

∀j ∈ {1, . . . , u}
(
∃x ∈ IR.Bj

(
∃y ∈ IS.Bj

(
x.A = a ∧ x.Bj = y.Bj ∧ y.A = a′

)))
.

Hence, by the Definition 1 we get

∀j ∈ {1, . . . , u}
(
∃r̃ ∈ R

(
∃s̃ ∈ S

(
r̃.A = a ∧ r̃.Bj = s̃.Bj ∧ s̃.A = a′

)))
.

Since A is a primary key in R and S, using (20) and (21), it follows that (a′, b1, . . . , bu, d1, . . . , dw) ∈ S,
hence (b1, . . . , bu, c1, . . . , cv, d1, . . . , dw) ∈ π∗\A(R)��π∗\A(S). Hence (18) holds.

Now, let’s proof

π∗\A(R)��π∗\A(S) ⊂ π∗\A(Q). (23)

Let

(a, b1, . . . , bu, c1, . . . , cv) = r ∈ R (24)

and

(a′, b1, . . . , bu, d1, . . . , dw) = s ∈ S. (25)

Therefore, by the column index definition, using (4), we get

∀j ∈ {1, . . . , u}
(
∃x ∈ IR.Bj

(
∃y ∈ IS.Bj

(
x.A = a ∧ x.Bj = bj = y.Bj ∧ y.A = a′

)))
.

Combining it with (9), we obtain

∀j ∈ {1, . . . , u}
(
∃i ∈ {0, . . . , k − 1}

(
∃x ∈ Ii

R.Bj

(
∃y ∈ Ii

S.Bj

(
x.A = a ∧ x.Bj = y.Bj ∧ y.A = a′

))))
.

Now, by (14),

∀j ∈ {1, . . . , u}
(
∃i ∈ {0, . . . , k − 1}

(
∃p ∈ P i

j

(
p.AR = a ∧ p.AS = a′

)))
.

Using (15), we get

∀j ∈ {1, . . . , u}
(
∃p ∈ Pj

(
p.AR = a ∧ p.AS = a′

))

By (16), it follows that (a, a′) ∈ P . Summing it with (17), (24) and (25), we get

(a, b1, . . . , bu, c1, . . . , cv , d1, . . . , dw) ∈ Q,

so (22) holds. The theorem is proven.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 37 No. 3 2016

260 IVANOVA, SOKOLINSKY

5. CONCLUSION

In this article, we presented a method of the decomposition of the natural join operator based on the
column indices and the domain-interval fragmentation. The correctness of this method was proven.
We used the described method in a prototype of parallel DBMS coprocessor. This prototype was
implemented on SMP with Xeon Phi accelerator. The computational experiments performed using
our prototype confirmed the efficiency of proposed approach [13]. This approach can be generalized
for many another relational operators. We plan to design the corresponding decomposition methods for
intersection, grouping and some others relational operators.

ACKNOWLEDGMENTS

The study was supported by the Ministry of Education and Science of the Russian Federation under
Federal targeted program “Research and development in priority fields of scientific and technological
complex of Russia in 2014–2020” (Governmental contract No. 14.574.21.0035).

REFERENCES
1. V. Turner, J. F. Gantz, D. Reinsel, and S. Minton, The Digital Universe of Opportunities: Rich Data and the

creasing Value of the Internet of Things. IDC white paper. April 2014. Available: http://idcdocserv.com/1678
[November 06, 2014].

2. L. B. Sokolinsky, Programming and Computer Software 30 (6), 337–346 (2004).
3. C. S. Pan and M. L. Zymbler, Lecture Notes in Computer Science 8055, LNCS, Pt. 1, 153–164 (2013).
4. K. Y. Besedin and P. S. Kostenetskiy, Simulating of query processing on multiprocessor database

systems with modern coprocessors, 37th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO) 2014, Opatija, Croatia, May 26–30, IEEE, 1835–
1837 (2014).

5. D. J. Abadi, S. R. Madden, and N. Hachem, Column-Stores vs. Row-Stores: How Different Are They
Really? Proceedings of the 2008 ACM SIGMOD international conference on Management of data,
June 912, 2008 (Vancouver, BC, Canada. ACM, 2008), p. 967–980.

6. H. Plattner and A. Zeier, In-Memory Data Management: An Inflection Point for Enterprise Applica-
tions (Springer, 2011), 254 p.

7. J. Fang, A. L. Varbanescu, and H. Sips, Sesame: A User-Transparent Optimizing Framework for Many-
Core Processors, Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid2013), May 13–16, 2013 (Delft, Netherlands. IEEE, 2013), p. 70–73.

8. S. Breß, F. Beier, H. Rauhe, K.-U. Sattler, E. Schallehn, G. Saake, Efficient Co-Processor Utilization in
Database Query Processing, Information Systems. 38 (8), 1084–1096 (2013).

9. M. Scherger, Design of an In-Memory Database Engine Using Intel Xeon Phi Coprocessors, Pro-
ceedings of the International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA’14), July 21–24, 2014 (Las Vegas, USA. CSREA Press, 2014), p. 21–27.

10. P. A. Deshmukh, Review on Main Memory Database, International Journal of Computer & Communication
Technology 2, Issue 7, 54–58 (2011).

11. H. LeHong and J. Fenn, Hype Cycle for Emerging Technologies. Gartner Inc. Research Report. August
2013. Available: http://www.gartner.com/doc/2571624 [December 16, 2014].

12. H. Garcia-Molina, J. D. Ullman, and J. Widom, Database Systems: The Complete Book (2nd Edition)
(Prentice Hall, 2008), 1224 p.

13. E. V. Ivanova and L. B. Sokolinsky, Decomposition of Natural Join Based on Domain-Interval Frag-
mented Column Indices, 38th International Convention on Information and Communication Technology,
Electronics and Microelectronics, MIPRO, 2015, Proceedings, IEEE, 2015, pp. 210–213.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 37 No. 3 2016

