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Abstract - The paper describes decomposition of natural join 

relational operator based on the column indices and domain-

interval fragmentation. This decomposition admits parallel 

executing the resource-intensive relational operators without 

data transfers. All column index fragments are stored in main 

memory in compressed form to conserve space. During the 

parallel execution of relational operators, compressed index 

fragments are loaded on different processor cores. These 

cores unpack fragments, perform relational operator and 

compress fragments of partial result, which is a set of keys. 

Partial results are merged in the resulting set of keys. DBMS 

use the resulting set of keys for building the resulting table. 

Described approach allows efficient parallel query 

processing for very large databases on modern computing 

cluster systems with many-core accelerators. A prototype of 

the DBMS coprocessor system was implemented using this 

technique. The results of computational experiments are 

presented. These results confirm the efficiency of proposed 

approach. 

I. INTRODUCTION 

Nowadays, human scientific and practical activities 

create the new challenges that demand big data processing. 

According to IDC study [1], the amount of digital data is 

doubling in size every two years, and by 2020 the digital 

universe – the amount of digital data created and replicated 

– will reach 44 zettabytes, or 44 trillion gigabytes. In 2013, 

only 22% of the information in the digital universe would 

be a candidate for analysis (useful if it were tagged) and 

less than 5% of that was actually analyzed. By 2020, the 

useful percentage could grow to more than 35%, mostly 

because of the growth of data from embedded systems. 

One of the popular ways to process efficiently big data 

is using the parallel database system, which are able to 

process data in parallel on the high performance system 

with distributed memory [2] – [5]. The traditional approach 

for database storing is row-oriented representation. 

However, column-oriented database systems have been 

shown to perform more than an order of magnitude better 

than row-oriented database systems (“row-stores”) on 

analytical workloads such as those found in data 

warehouses, decision support, and business intelligence 

applications. The elevator pitch behind this performance 

difference is straightforward: column-stores are more I/O 

efficient for read-only queries since they only have to read 

from disk (or from memory) those attributes accessed by a 

query [6]. Column-oriented databases are particularly well 

suited for compression because data of the same type is 

stored in consecutive sections. This makes it possible to use 

compression algorithms specifically tailored to patterns 

that are typical for the data type [7]. 

In recent years, more and more many-core processors 

are superseding sequential ones. Increasing parallelism, 

rather than increasing clock rate, has become the primary 

engine of processor performance growth, and this trend is 

likely to continue. Particularly, today’s GPUs (Graphic 

Processing Units) and Intel’s MIC (Many Integrated 

Cores), greatly outperforming traditional CPUs in 

arithmetic throughput and memory bandwidth, can use 

hundreds of parallel processor cores to execute tens of 

thousands of threads [8]. Recent trends in new hardware 

and architectures have gained considerable attention in the 

database community. Processing units such as GPU or MIC 

provide advanced capabilities for massively parallel 

computation. Database processing can take advantage of 

such units not only by exploiting this parallelism, e.g., in 

query operators (either as task or data parallelism), but also 

by offloading computation from the Central Processing 

Unit (CPU) to these coprocessors, saving CPU time for 

other tasks [9]. The many integrated cores of the Xeon Phi 

make this hardware accelerator a natural computing 

platform for an in-memory database engine or server. The 

database tables reside in the memory space of the MIC thus 

supporting fast in-memory database applications [10]. 

Main memory as the primary storage location is 

becoming increasingly attractive as a result of the 

decreasing cost/size ratio [7]. Main Memory Database 

(MMDB) eliminates disk access by storing and 

manipulating entire database in main memory. For 

performance-significant systems MMDB offer very low 

response time and very high throughput [11]. According to 

Gartner’s 2013 Hype Cycle for Emerging Technologies 

report, in-memory database management system have 2 to 

5 years until widespread adoption [12]. 

According to this, the problem of developing new 

efficient methods of parallel database processing in main 

memory on modern compute clusters with many-core 

accelerators using column-oriented representation and data 

compression is important. To meet this goal, we offer a 



special type of index structures called distributed column 

indices. Distributed column indices allow to perform a 

decomposition of relational operators, which admits the 

efficient parallel execution of them on computing cluster 

system, equipped with many-core accelerators. In this 

paper, we consider the decomposition of the natural join 

operator. In this paper, we use the notation from [13]. The 

symbol  we use to denote the operation of concatenation 

of the tuples. 

II. COLUMN INDEX 

Let  1, , , uR A B B  be the relation R with virtual  

key (virtual record identifier) A  and the  
following attributes: 

1, , uB B . Tuples of R have length  

of 1u   and form of 
1( , , , )ua b b , where 

0a   and 

 {1, , }
jj Bj u b  D . Here, 

jBD  is the domain of 

attribute 
jB . Let . jr B  denote a value of attribute 

jB . Let 

.r A  denote a value of the virtual key of tuple r: 

1( . , . , , . )ur r A r B r B . The virtual key of relation R has 

the property:  , . .r r R r r r A r A          . Define 

tuple address as a virtual key value of the tuple. To get the 
tuple by its address, we will use &R

 dereferencing 

function:  & ( . )Rr R r A r   . 

Let    *, , , R A B T R n   be given. Let a linear order 

be defined on set 
BD . The column index .R BI  for attribute 

B of relation R is an ordered relation, which satisfies the 
following requirements: 

 
.( )R BT I n  и    .A R B AI R  ; (1) 

  1 2 . 1 2 1 2, . .R Bx x I x x x B x B     ; (2) 

   . . . . .R Br R x I r A x A r B x B       . (3) 

Condition (1) means that the sets of virtual keys of 

column index and indexed relation are equal. Condition (2) 

means that index elements are sorted in ascending order of 

values of attribute B . Condition (3) means that attribute 

A  of an index element contains the address of tuple of R, 

which has the same value of B attribute as the 

corresponding element of column index has. 

From the intensional point of view, the column index 

.R BI  is a table with two columns A  и B  (see fig. 1). The 

number of rows in the column index is equal to the number 

of rows in the indexed table. Column B of index 
.R BI  

contains all the values of column B in table R (including 

duplicates). These values are sorted in ascending order 

inside column index. 

III. DOMAIN-INTERVAL FRAGMENTATION 

Let a total ordering relation be defined on domain 
BD . 

Divide 
BD  into 0k   nonintersecting intervals: 
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Define interval fragmented function on domain 
BD  as

 : 0, , 1
B B k   D D . This function satisfies the 

following requirement: 

   {0, , 1} ( )
BB ii k b b i b V       DD . (5) 

Let column index 
.R BI  be given for relation 

 * , ,R A B   with attribute B  on domain 
BD . Let 

interval fragmented function 
B

D  be defined on domain 

BD . The function 

  
. .: 0, , 1

R BI R BI k     (6) 

is domain-interval fragmented function for index 
.R BI , if 

it satisfies the following requirement: 

  
.. ( ) ( . )

R B BR B Ix I x x B    D . (7) 

Define the ith fragment  0, , 1i k    of the index  .R BI  

as 

  
.. .|  ( );

R B

i

R B R B II x x iI x   . (8) 

It means that the ith fragment contains tuples, which have 

values of attribute B  from the ith domain interval. 

This fragmentation is called the domain-interval 

fragmentation. The number of fragments is the degree of 

fragmentation. 

The domain-interval fragmentation has the following 

fundamental properties, which follow directly from its 

definition: 
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  . ., {0, ,k 1} i j

R B R Bi j i j I I      . (10) 

IV. DECOMPOSITION OF THE NATURAL JOIN 

OPERATOR 

Let two relations be given: 

  1 1

* , , ,, , , vuR A B B C C  

and 

  1 1

* , , ,, , , wuS A B B D D . 
 

Figure 1.  Column index 
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Let two sets of column indices be given for attributes 

1, , uB B : 

 
1. ., ,

uR B R BI I ; 

 
1. ., ,

uS B S BI I . 

Let domain-interval fragmentation of degree k  be 

defined for these indices: 
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for all 0, , 1i k    and 1, ,j u  . Define 
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Define 

1 1 1. , , . , . , , . , . , , .u v wr B r B r C r CQ s D s D   {

( . , . )r R s S r A s A P     } . 

Then
\ \( ) ( )A AR S Q    . 

Note that calculation of i

jP  by (13) can be done in 

parallel on k different processors without data exchange. It 
ensures a near-linear speedup. 

V. PERFORMANCE EVALUATION 

The described approach was implemented as a 

prototype of DBMS coprocessor system. The source code 

of the program is openly available in the public GitHub 

repository [15]. Column indices and domain-interval 

fragmentation were evaluated using this prototype. We 

performed natural join operator over fragmented column 

indices 
.R BI  and 

.S BI . Attribute B  of column index 
.R BI  is 

a virtual key. Attribute B  of column index 
.S BI  is a foreign 

key. Join operator was implemented by merge join 

algorithm. 

Number of column index tuples were following:  

.( )R BT I  = 600 000 and 
.( )S BT I  = 60 000 000. Column 

indices 
.R BI  and 

.S BI  were fragmented using domain-

interval fragmentation. Every fragment of column indices 

was compressed by Zlib data compression library [14]. In 

described experiments, attribute B  of column index 
.S BI  

had uniform and nonuniform (rule: 80/20, 65/20 and 45/20) 

data distribution. 

The experiments were done on Intel Xeon Phi 

accelerator with 61 cores. Join operator was performed in 1, 

2 and 4 threads per core (see fig. 2). The results of this 

experiment show that we have maximum speedup if we use 

1 thread per core. The second experiment (see fig. 3) shows 

that load balancing can be effectively managed by 

increasing the number of fragments. 

The experiments have shown that approach on base 

column indices allow to perform resource-intensive join 

operator for 
.( )R BT I  = 600 000 and 

.( )S BT I  = 60 000 000 

during 1 second on one Intel Xeon Phi accelerator. The 

described approach eliminates data transfer, so we can 

expect a near-linear speedup on computing cluster systems 

with million nodes equipped with many-core accelerators. 

VI. RELATED WORK 

Binary table model was introduced in the paper [16]. 

On the basis of this model, several column-oriented DBMS 

were designed. As it was demonstrated by work [17] and 

[18], column-oriented systems offer an order-of-magnitude 

performance improvement over traditional row-oriented 

systems for analytical processing workloads, such as those 

found in data warehouses or decision support systems. One 

of the main disadvantages of column-oriented DBMS is 

lacking the optimization technique, which is intrinsic to 

relational (row-oriented) DBMS. The work [19] 

investigated column-oriented simulation in a relational 

DBMS via the following techniques: vertical partitioning, 

index-only plans and materialized views. The investigation 

 
Figure 2.  Dependence between time of calculation and number of 

fragments 

 
Figure 3.  The influence of number of fragments on load balancing of 

Xeon Phi cores 



showed that such techniques do not improve the 

performance of row stores for analytical processing 

workloads. To overcome the problems faced with work 

[19], the work [20] introduced two new operators: Index 

Merge and Index Merge Join. The algorithms presented in 

this paper were designed specifically to take advantage of 

parallel processing whenever possible. Another approach 

was proposed in work [21]. This paper introduced a new 

index type, column store indexes, where data is stored 

column-wise in compressed form. Column store indexes 

are intended for data-warehousing workloads where 

queries typically process large numbers of rows but only a 

few columns. To further speed up such queries, the paper 

[21] also introduced a new query processing mode, batch 

processing, where operators process a batch of rows (in 

columnar format) at a time instead of a row at a time. 

VII. CONCLUSIONS 

In this article, we presented a decomposition of the 
natural join operator based on the column indices and the 
domain-interval fragmentation. Our approach was 
evaluated using the prototype DBMS coprocessor system. 
Experiments showed its efficiency for a resource-intensive 
natural join operator. Proposed approach can be used on 
computing cluster systems with many-core accelerators. 
Described technique is suitable for data warehouse 
workloads as well as for OLTP workloads. 

As a direction of a future research, we are going to use 
described approach for the decomposition of another 
relational operators and compare speedup with existing 
DBMS. 
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