
Decomposition of Natural Join Based

on Domain-Interval Fragmented

Column Indices

Elena Ivanova and Leonid Sokolinsky

South Ural State University, Chelyabinsk, Russia

ivanovaev@susu.ac.ru, Leonid.Sokolinsky@susu.ru

Abstract - The paper describes decomposition of natural join

relational operator based on the column indices and domain-

interval fragmentation. This decomposition admits parallel

executing the resource-intensive relational operators without

data transfers. All column index fragments are stored in main

memory in compressed form to conserve space. During the

parallel execution of relational operators, compressed index

fragments are loaded on different processor cores. These

cores unpack fragments, perform relational operator and

compress fragments of partial result, which is a set of keys.

Partial results are merged in the resulting set of keys. DBMS

use the resulting set of keys for building the resulting table.

Described approach allows efficient parallel query

processing for very large databases on modern computing

cluster systems with many-core accelerators. A prototype of

the DBMS coprocessor system was implemented using this

technique. The results of computational experiments are

presented. These results confirm the efficiency of proposed

approach.

I. INTRODUCTION

Nowadays, human scientific and practical activities

create the new challenges that demand big data processing.

According to IDC study [1], the amount of digital data is

doubling in size every two years, and by 2020 the digital

universe – the amount of digital data created and replicated

– will reach 44 zettabytes, or 44 trillion gigabytes. In 2013,

only 22% of the information in the digital universe would

be a candidate for analysis (useful if it were tagged) and

less than 5% of that was actually analyzed. By 2020, the

useful percentage could grow to more than 35%, mostly

because of the growth of data from embedded systems.

One of the popular ways to process efficiently big data

is using the parallel database system, which are able to

process data in parallel on the high performance system

with distributed memory [2] – [5]. The traditional approach

for database storing is row-oriented representation.

However, column-oriented database systems have been

shown to perform more than an order of magnitude better

than row-oriented database systems (“row-stores”) on

analytical workloads such as those found in data

warehouses, decision support, and business intelligence

applications. The elevator pitch behind this performance

difference is straightforward: column-stores are more I/O

efficient for read-only queries since they only have to read

from disk (or from memory) those attributes accessed by a

query [6]. Column-oriented databases are particularly well

suited for compression because data of the same type is

stored in consecutive sections. This makes it possible to use

compression algorithms specifically tailored to patterns

that are typical for the data type [7].

In recent years, more and more many-core processors

are superseding sequential ones. Increasing parallelism,

rather than increasing clock rate, has become the primary

engine of processor performance growth, and this trend is

likely to continue. Particularly, today’s GPUs (Graphic

Processing Units) and Intel’s MIC (Many Integrated

Cores), greatly outperforming traditional CPUs in

arithmetic throughput and memory bandwidth, can use

hundreds of parallel processor cores to execute tens of

thousands of threads [8]. Recent trends in new hardware

and architectures have gained considerable attention in the

database community. Processing units such as GPU or MIC

provide advanced capabilities for massively parallel

computation. Database processing can take advantage of

such units not only by exploiting this parallelism, e.g., in

query operators (either as task or data parallelism), but also

by offloading computation from the Central Processing

Unit (CPU) to these coprocessors, saving CPU time for

other tasks [9]. The many integrated cores of the Xeon Phi

make this hardware accelerator a natural computing

platform for an in-memory database engine or server. The

database tables reside in the memory space of the MIC thus

supporting fast in-memory database applications [10].

Main memory as the primary storage location is

becoming increasingly attractive as a result of the

decreasing cost/size ratio [7]. Main Memory Database

(MMDB) eliminates disk access by storing and

manipulating entire database in main memory. For

performance-significant systems MMDB offer very low

response time and very high throughput [11]. According to

Gartner’s 2013 Hype Cycle for Emerging Technologies

report, in-memory database management system have 2 to

5 years until widespread adoption [12].

According to this, the problem of developing new

efficient methods of parallel database processing in main

memory on modern compute clusters with many-core

accelerators using column-oriented representation and data

compression is important. To meet this goal, we offer a

special type of index structures called distributed column

indices. Distributed column indices allow to perform a

decomposition of relational operators, which admits the

efficient parallel execution of them on computing cluster

system, equipped with many-core accelerators. In this

paper, we consider the decomposition of the natural join

operator. In this paper, we use the notation from [13]. The

symbol we use to denote the operation of concatenation

of the tuples.

II. COLUMN INDEX

Let  1, , , uR A B B be the relation R with virtual

key (virtual record identifier) A and the
following attributes:

1, , uB B . Tuples of R have length

of 1u  and form of
1(, , ,)ua b b , where

0a  and

 {1, , }
jj Bj u b  D . Here,

jBD is the domain of

attribute
jB . Let . jr B denote a value of attribute

jB . Let

.r A denote a value of the virtual key of tuple r:

1(. , . , , .)ur r A r B r B . The virtual key of relation R has

the property:  , . .r r R r r r A r A          . Define

tuple address as a virtual key value of the tuple. To get the
tuple by its address, we will use &R

 dereferencing

function:  & (.)Rr R r A r   .

Let    *, , , R A B T R n  be given. Let a linear order

be defined on set
BD . The column index .R BI for attribute

B of relation R is an ordered relation, which satisfies the
following requirements:

.()R BT I n и    .A R B AI R  ; (1)

  1 2 . 1 2 1 2, . .R Bx x I x x x B x B     ; (2)

   .R Br R x I r A x A r B x B       . (3)

Condition (1) means that the sets of virtual keys of

column index and indexed relation are equal. Condition (2)

means that index elements are sorted in ascending order of

values of attribute B . Condition (3) means that attribute

A of an index element contains the address of tuple of R,

which has the same value of B attribute as the

corresponding element of column index has.

From the intensional point of view, the column index

.R BI is a table with two columns A и B (see fig. 1). The

number of rows in the column index is equal to the number

of rows in the indexed table. Column B of index
.R BI

contains all the values of column B in table R (including

duplicates). These values are sorted in ascending order

inside column index.

III. DOMAIN-INTERVAL FRAGMENTATION

Let a total ordering relation be defined on domain
BD .

Divide
BD into 0k  nonintersecting intervals:

     0 0 1 1 1 2 1 1

0 1

1

0

; , ; , , ; ;

;

.

k k k

k

k

B i

i

V v v V v v V v v

v v v

V

 






  


   




D

. (4)

Define interval fragmented function on domain
BD as

 : 0, , 1
B B k   D D . This function satisfies the

following requirement:

   {0, , 1} ()
BB ii k b b i b V       DD . (5)

Let column index
.R BI be given for relation

 * , ,R A B  with attribute B on domain
BD . Let

interval fragmented function
B

D be defined on domain

BD . The function

  
. .: 0, , 1

R BI R BI k    (6)

is domain-interval fragmented function for index
.R BI , if

it satisfies the following requirement:

  
.. () (.)

R B BR B Ix I x x B    D . (7)

Define the ith fragment  0, , 1i k   of the index .R BI

as

  
.. .| ();

R B

i

R B R B II x x iI x   . (8)

It means that the ith fragment contains tuples, which have

values of attribute B from the ith domain interval.

This fragmentation is called the domain-interval

fragmentation. The number of fragments is the degree of

fragmentation.

The domain-interval fragmentation has the following

fundamental properties, which follow directly from its

definition:

1

. .

0

k
i

R B R B

i

I I




 ; (9)

  . ., {0, ,k 1} i j

R B R Bi j i j I I      . (10)

IV. DECOMPOSITION OF THE NATURAL JOIN

OPERATOR

Let two relations be given:

  1 1

* , , ,, , , vuR A B B C C

and

  1 1

* , , ,, , , wuS A B B D D .

Figure 1. Column index

R

A B ∙∙∙∙

0 36 ∙∙∙∙

1 14 ∙∙∙∙

2 36 ∙∙∙∙

3 10 ∙∙∙∙

4 74 ∙∙∙∙

5 27 ∙∙∙∙

6 58 ∙∙∙∙

IR.B

A B

3 10

1 14

5 27

2 36

0 36

6 58

4 74

Let two sets of column indices be given for attributes

1, , uB B :

1. ., ,

uR B R BI I ;

1. ., ,

uS B S BI I .

Let domain-interval fragmentation of degree k be

defined for these indices:

1

. .

0
j j

k
i

R B R B

i

I I




 ; (11)

1

. .

0
j j

k
i

S B S B

i

I I




 . (12)

Let

. .

. .

. .. , . . .
i i

i ij jR B R S B Sj j R B j S B jj j

i i i

j R B S BI A A I A A I B I B
P I I

  

 
  

 
 (13)

for all 0, , 1i k   and 1, ,j u  . Define

1

0

k
i

j j

i

P P




 . (14)

Let

1

u

j

j

P P


 . (15)

Define

1 1 1. , , . , . , , . , . , , .u v wr B r B r C r CQ s D s D   {

(. , .)r R s S r A s A P     } .

Then
\ \() ()A AR S Q    .

Note that calculation of i

jP by (13) can be done in

parallel on k different processors without data exchange. It
ensures a near-linear speedup.

V. PERFORMANCE EVALUATION

The described approach was implemented as a

prototype of DBMS coprocessor system. The source code

of the program is openly available in the public GitHub

repository [15]. Column indices and domain-interval

fragmentation were evaluated using this prototype. We

performed natural join operator over fragmented column

indices
.R BI and

.S BI . Attribute B of column index
.R BI is

a virtual key. Attribute B of column index
.S BI is a foreign

key. Join operator was implemented by merge join

algorithm.

Number of column index tuples were following:

.()R BT I = 600 000 and
.()S BT I = 60 000 000. Column

indices
.R BI and

.S BI were fragmented using domain-

interval fragmentation. Every fragment of column indices

was compressed by Zlib data compression library [14]. In

described experiments, attribute B of column index
.S BI

had uniform and nonuniform (rule: 80/20, 65/20 and 45/20)

data distribution.

The experiments were done on Intel Xeon Phi

accelerator with 61 cores. Join operator was performed in 1,

2 and 4 threads per core (see fig. 2). The results of this

experiment show that we have maximum speedup if we use

1 thread per core. The second experiment (see fig. 3) shows

that load balancing can be effectively managed by

increasing the number of fragments.

The experiments have shown that approach on base

column indices allow to perform resource-intensive join

operator for
.()R BT I = 600 000 and

.()S BT I = 60 000 000

during 1 second on one Intel Xeon Phi accelerator. The

described approach eliminates data transfer, so we can

expect a near-linear speedup on computing cluster systems

with million nodes equipped with many-core accelerators.

VI. RELATED WORK

Binary table model was introduced in the paper [16].

On the basis of this model, several column-oriented DBMS

were designed. As it was demonstrated by work [17] and

[18], column-oriented systems offer an order-of-magnitude

performance improvement over traditional row-oriented

systems for analytical processing workloads, such as those

found in data warehouses or decision support systems. One

of the main disadvantages of column-oriented DBMS is

lacking the optimization technique, which is intrinsic to

relational (row-oriented) DBMS. The work [19]

investigated column-oriented simulation in a relational

DBMS via the following techniques: vertical partitioning,

index-only plans and materialized views. The investigation

Figure 2. Dependence between time of calculation and number of

fragments

Figure 3. The influence of number of fragments on load balancing of

Xeon Phi cores

showed that such techniques do not improve the

performance of row stores for analytical processing

workloads. To overcome the problems faced with work

[19], the work [20] introduced two new operators: Index

Merge and Index Merge Join. The algorithms presented in

this paper were designed specifically to take advantage of

parallel processing whenever possible. Another approach

was proposed in work [21]. This paper introduced a new

index type, column store indexes, where data is stored

column-wise in compressed form. Column store indexes

are intended for data-warehousing workloads where

queries typically process large numbers of rows but only a

few columns. To further speed up such queries, the paper

[21] also introduced a new query processing mode, batch

processing, where operators process a batch of rows (in

columnar format) at a time instead of a row at a time.

VII. CONCLUSIONS

In this article, we presented a decomposition of the
natural join operator based on the column indices and the
domain-interval fragmentation. Our approach was
evaluated using the prototype DBMS coprocessor system.
Experiments showed its efficiency for a resource-intensive
natural join operator. Proposed approach can be used on
computing cluster systems with many-core accelerators.
Described technique is suitable for data warehouse
workloads as well as for OLTP workloads.

As a direction of a future research, we are going to use
described approach for the decomposition of another
relational operators and compare speedup with existing
DBMS.

ACKNOWLEDGMENT

The study was supported by the Ministry of education
and science of Russia under Federal targeted program
“Research and development in priority fields of scientific
and technological complex of Russia in 2014-2020”
(Governmental contract No. 14.574.21.0035).

REFERENCES

[1] V. Turner, J.F. Gantz, D. Reinsel, and S. Minton, “The digital
universe of opportunities: rich data and the creasing value of the
internet of things,” IDC, White Paper, 2014.
http://idcdocserv.com/1678 [January 20, 2015].

[2] L.B. Sokolinsky, “Survey of architectures of parallel database
systems,” Programming and Computer Software, vol. 30, No. 6, pp.
337-346, 2004.

[3] A.V. Lepikhov and L.B. Sokolinsky, “Query processing in a DBMS
for cluster systems,” Programming and Computer Software,
vol. 36, No. 4, pp. 205-215, 2010.

[4] C.S. Pan, and M.L. Zymbler, “Taming elephants, or how to embed
parallelism into PostgreSQL,” in Processing of the 24th
International Conference, DEXA 2013, Prague, Czech Republic,
part I, vol. 8055, pp. 153-164, August, 2013.

[5] K.Y. Besedin, and P.S. Kostenetskiy, “Simulating of query
processing on multiprocessor database systems with modern
coprocessors,” in Proceedings of the 37th International Convention,
MIPRO 2014, Opatija, Croatia, pp. 1835-1837, May, 2014.

[6] D.J. Abadi, S.R. Madden, and N. Hachem, “Column-stores vs. row-
stores: how different are they really?,” in Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data,
Vancouver, BC, Canada, pp. 967-980, June, 2008.

[7] H. Plattner, and A. Zeier, In-Memory Data Management: An
Inflection Point for Enterprise Applications. Springer, 2011.

[8] J. Fang, A.L. Varbanescu, and H. Sips, “Sesame: a user-transparent
optimizing framework for many-core processors,” in Proceedings
of the 13th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, CCGrid2013, Delft, Netherlands, pp. 70-73,
May, 2013.

[9] S. Breß, F. Beier, H. Rauhe, K.-U. Sattler, E. Schallehn, and
G. Saake, “Efficient Co-Processor Utilization in Database Query
Processing,” Information Systems, vol. 38, No. 8, pp. 1084–1096,
2013.

[10] M. Scherger, “Design of an In-Memory Database Engine Using
Intel Xeon Phi Coprocessors,” in Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and
Applications, PDPTA’14, Las Vegas, USA, pp. 21-27.

[11] P.A. Deshmukh, “Review on Main Memory Database,”
International Journal of Computer & Communication Technology,
vol. 2, No. 7, pp. 54–58, 2011.

[12] H. LeHong, and J. Fenn, “Hype Cycle for Emerging Technologies,”
Gartner Inc, Research Report, 2013.
http://www.gartner.com/doc/2571624 [December 16, 2014].

[13] H. Garcia-Molina, J.D. Ullman, and J. Widom, Database Systems:
The Complete Book (2nd Edition). Prentice Hall, 2008. 1224 p.

[14] G. Roelofs, J. Gailly, and M. Adler. Zlib. http://www.zlib.net/
[April 4, 2015].

[15] A prototype of the DBMS coprocessor system using colomn indices
based on domain-Interval fragmentation. https://github.com/elena-
ivanova/colomnindices [April 4, 2015].

[16] G.P. Copeland, and S.N. Khoshafian, “A decomposition storage
model,” in Proc. SIGMOD, 1985, pp. 268-279.

[17] P.A. Boncz, M. Zukowski, and N. Nes, “MonetDB/X100: Hyper-
Pipelining Query Execution,” in Proc. CIDR, 2005, pp. 225-237.

[18] M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack, M.
Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin,
N. Tran, and S. Zdonik, “C-Store: A Column-Oriented DBMS,” in
Proc. VLDB, 2005, pp. 553-564.

[19] D.J. Abadi, S.R. Madden, and N. Hachem, “Column-Stores vs.
Row-Stores: How Different Are They Really?,” in Proc. SIGMOD,
2008, pp. 967-980.

[20] A. El-Helw, K.A. Ross, B. Bhattacharjee, C.A. Lang and
G.A. Mihaila, “Column-oriented query processing for row stores,”
in Proc. DOLAP, 2011, pp. 67-74.

[21] P. Larson, C. Clinciu, E.N. Hanson, A. Oks, S.L. Price, S.
Rangarajan, A. Surna and Q. Zhou, “SQL server column store
indexes,” in Proc. SIGMOD Conference, 2011, pp. 1177-1184.

