
Lecture 2. XML

Markup Languages

XML

XML - eXtensible Markup Language

2

 XML (W3C, 1998)

 XML 1.0 (Fifth Edition) (W3C, 2008)

 XML 1.1 (Second Edition) (W3C, 2006)

Markup Languages

Markup Languages HTML & XML

Markup Languages 3

 HTML XML

Markup Language + +

Tags as <name_tag></name_tag> + +

Document Type Definition (DTD) + +

Display + -

XML and HTML were designed with different goals:

• XML was designed to transport and store data, with

focus on what data is

• HTML was designed to display data, with focus on how

data looks

HTML + Web-browser = Web-page

XML + Web-browser = XML

How Can XML be Used?

XML Separates Data from HTML
If you need to display dynamic data in your HTML

document, it will take a lot of work to edit the HTML

each time the data changes. With XML, data can be

stored in separate XML files. This way you can

concentrate on using HTML/CSS for display and

layout, and be sure that changes in the underlying

data will not require any changes to the HTML.

4 Markup Languages

How Can XML be Used?

XML Simplifies Data Sharing
In the real world, computer systems and databases

contain data in incompatible formats. XML data is

stored in plain text format. This provides a software-

and hardware-independent way of storing data. This

makes it much easier to create data that can be

shared by different applications.

5 Markup Languages

How Can XML be Used?

XML Simplifies Data Transport
One of the most time-consuming challenges for

developers is to exchange data between incompatible

systems over the Internet. Exchanging data as XML

greatly reduces this complexity, since the data can be

read by different incompatible applications.

6 Markup Languages

How Can XML be Used?

XML Simplifies Platform Changes
Upgrading to new systems (hardware or software

platforms), is always time consuming. Large amounts

of data must be converted and incompatible data is

often lost. XML data is stored in text format. This

makes it easier to expand or upgrade to new

operating systems, new applications, or new

browsers, without losing data.

7 Markup Languages

How Can XML be Used?

XML is Used to Create New Internet

Languages
A lot of new Internet languages are created with XML.

Here are some examples: XHTML, WSDL for

describing available web services, WAP and WML as

markup languages for handheld devices, RSS

languages for news feeds, RDF and OWL for

describing resources and ontology, SMIL for

describing multimedia for the web.

8 Markup Languages

XML Syntax Rules

The rules of construction in the XML document

are described in the W3C.

Языки разметки 9

XML Syntax Rules

XML documents should begin with an XML

declaration which specifies the version of

XML being used.

 <?xml version="1.0"?>

 <greeting>Hello, world!</greeting>

10 Markup Languages

XML Syntax Rules

11

 Prolog

 1 only root element

 Hierarchy of elements

 Attributes

 Text elements

 Empty elements

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE books SYSTEM “book.dtd”>

<books>

 <book id=“1”>

 <title>Evgeniy Onegin</title>

 <author>Аlexander Pushkin</author>

 <abstract>In the book consist of

 novel in verse...</abstract>

 <shelf num=“22”/>

 </book>

 <!-- ... -->

</books>

Markup Languages

XML Syntax Rules

12

 Prolog

 1 only root element

 Hierarchy of elements

 Attributes

 Text elements

 Empty elements

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE books SYSTEM “book.dtd”>

<books>

 <book id=“1”>

 <title>Evgeniy Onegin</title>

 <author>Аlexander Pushkin</author>

 <abstract>In the book consist of

 novel in verse...</abstract>

 <shelf num=“22”/>

 </book>

 <!-- ... -->

</books>

Markup Languages

XML Syntax Rules

13

 Prolog

 1 only root element

 Hierarchy of elements

 Attributes

 Text elements

 Empty elements

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE books SYSTEM “book.dtd”>

<books>

 <book id=“1”>

 <title>Evgeniy Onegin</title>

 <author>Аlexander Pushkin</author>

 <abstract>In the book consist of

 novel in verse...</abstract>

 <shelf num=“22”/>

 </book>

 <!-- ... -->

</books>

Markup Languages

XML Syntax Rules

Element name is case sensitive

 <aaa> <Aaa>

All elements have to be close

Elements may no be intersected

(<a>)

14 Markup Languages

XML Syntax Rules

15

 Prolog

 1 only root element

 Hierarchy of elements

 Attributes

 Text elements

 Empty elements

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE books SYSTEM “book.dtd”>

<books>

 <book id=“1”>

 <title>Evgeniy Onegin</title>

 <author>Аlexander Pushkin</author>

 <abstract>In the book consist of

 novel in verse...</abstract>

 <shelf num=“22”/>

 </book>

 <!-- ... -->

</books>

Markup Languages

XML Syntax Rules

16

 Prolog

 1 only root element

 Hierarchy of elements

 Attributes

 Text elements

 Empty elements

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE books SYSTEM “book.dtd”>

<books>

 <book id=“1”>

 <title>Evgeniy Onegin</title>

 <author>Аlexander Pushkin</author>

 <abstract>In the book consist of

 novel in verse...</abstract>

 <shelf num=“22”/>

 </book>

 <!-- ... -->

</books>

Markup Languages

XML Syntax Rules

17

 Prolog

 1 only root element

 Hierarchy of elements

 Attributes

 Text elements

 Empty elements

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE books SYSTEM “book.dtd”>

<books>

 <book id=“1”>

 <title>Evgeniy Onegin</title>

 <author>Аlexander Pushkin</author>

 <abstract>In the book consist of

 novel in verse...</abstract>

 <shelf num=“22”/>

 </book>

 <!-- ... -->

</books>

Markup Languages

XML Tree

18

book

title author abstract

text text text text

books

id

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE books SYSTEM “book.dtd”>

<books>

 <book id=“1”>

 <title>Evgeniy Onegin</title>

 <author>Аlexander Pushkin</author>

 <abstract>In the book consist of

 novel in verse...</abstract>

 <shelf num=“22”/>

 </book>

 <!-- ... -->

</books>

Well-formed & Valid

A "Well-formed" XML document has correct

XML syntax.

A "Valid" XML document is a "Well Formed"

XML document, which also conforms to the rules

of a Document Type Definition (DTD).

The purpose of a DTD is to define the structure

of an XML document. It defines the structure

with a list of legal elements.

19 Markup Languages

DTD for XML

For HTML it is written DTD:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD

HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<!DOCTYPE html>

Other

XML have no DTD. You write DTD!

20 Markup Languages

Why Use a DTD?

With a DTD, each of your XML files can carry a

description of its own format.

With a DTD, independent groups of people can

agree to use a standard DTD for interchanging

data.

Your application can use a standard DTD to

verify that the data you receive from the outside

world is valid.

You can also use a DTD to verify your own data.

21 Markup Languages

DTD Declaration

• If the DTD is declared inside the XML file, it should be

wrapped in a DOCTYPE definition with the following syntax:

 <!DOCTYPE root-element [element-declarations]>

• Declared in an external file:
 <!DOCTYPE root-element SYSTEM “filename.dtd”>

22

<?xml version="1.0"?>

<!DOCTYPE book SYSTEM

“example.dtd”>

<book>

…

</book>

<?xml version="1.0"?>

<!ELEMENT book (title, author*,

pages)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT pages (#PCDATA)>

example.xml example.dtd

Markup Languages

The basic markup declarations

Elements

Attributes

Entity

PCDATA

CDATA

23 Markup Languages

Elements

• Elements are the main building blocks of both

XML and HTML documents.

<!ELEMENT name (element-content)>

element-content:

#PCDATA

child-element-name, child-element-name, …

EMPTY

ANY

 24 Markup Languages

Element Example

example.dtd:
 <!ELEMENT books (#PCDATA)>

Valid:
<!DOCTYPE books SYSTEM "example.dtd">
<books>Any text</books>

<!DOCTYPE books SYSTEM "example.dtd">
<books/>

No valid:
<!DOCTYPE books SYSTEM "example.dtd">
<text>Any text</text>

25 Markup Languages

Element Example
example.dtd:

 <!ELEMENT book (title, author)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

Valid:
<book>

 <title>Evgeniy Onegin</title>

 <author>Alexander Pushkin</author>

 </book>

No valid:
<book>

 <title>Evgeniy Onegin</title>

 </book>

<book>

 <author>Alexander Pushkin</author>

 <title>Evgeniy Onegin</title>

 </book>

26

Error: no element

author!

Error : incorrect order of

the elements!

Markup Languages

Element Example

example.dtd:

 <!ELEMENT shelf (EMPTY)>

Valid:
<shelf />

<shelf></shelf>

No valid:
<shelf>123</shelf>

27

Error: Element shelf

empty no!

Markup Languages

Number of occurrences of

elements in the document
Declaring Only One Occurrence of an Element

 <!ELEMENT name (child-element-name)>

Declaring Minimum One Occurrence of an Element

 <!ELEMENT name (child-element-name+)>

Declaring Zero or More Occurrences of an Element

 <!ELEMENT name (child-element-name*)>

Declaring Zero or One Occurrences of an Element

 <!ELEMENT name (child-element-name?)>

 or

 <!ELEMENT name (book, (autor|autors))>

28 Markup Languages

Example

example.dtd:
 <!ELEMENT book (title, author)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

No valid XML-документы:
<book>

 <title>Evgeniy Onegin</title>

 <title>Evgeniy Onegin</title>

 <author>Alexander Pushkin</author>

 </book>

29

Error: element title must

be one!

Markup Languages

Example

example.dtd:

 <!ELEMENT books (book+)>

Valid:
<books>

 <book>...</book>

 <book>...</book>

 </books>

No valid:
<books></books>

30

Error: A required

element book!

Markup Languages

Example

example.dtd:

 <!ELEMENT books (book*)>

Valid:
<books>

 <book>...</book>

 <book>...</book>

 </books>

No valid:
<books></books>

31 Markup Languages

Example

example.dtd:
 <!ELEMENT books (book?)>

Valid:
<books>

 <book>...</book>

 </books>

<books></books>

No valid:
<books>

 <book>...</book>

 <book>...</book>

 </books>

32

Error: element book

must be not more than

one!

Markup Languages

Declaring Mixed Content

<!ELEMENT book (#PCDATA|title|author)*>

The example declares that the "book" element

can contain zero or more occurrences of
parsed character data (#PCDATA), "title" or

"author" elements.

33 Markup Languages

Attributes

Attributes provide extra information about elements.

<!ATTLIST element-name attr-name attr-type

default-value>

attr-type:
Type: CDATA, ID, IDREF, NMTOKEN,…

Values: (en1|en2|…)

default-value:
value

#REQUIRED

#IMPLIED

#FIXED value

34 Markup Languages

Example

example.dtd:

 <!ELEMENT shelf (EMPTY)>

 <!ATTLIST shelf num CDATA #REQUIRED>

Valid:
<shelf num=“123”/>

<shelf num=“s1”/>

No valid:
<shelf/>

35

Error: A required

attribute num!

Markup Languages

Example

example.dtd:
 <!ELEMENT book (ANY)>

 <!ATTLIST book id ID #REQUIRED>

Valid:
<books>

 <book id=“a1”>Text</book>

 <book id=“a2”>Text</book>

 </books>

No valid:
<books>

 <book id=“a1”>Text</book>

 <book id=“a1”>Text</book>

 </books>

<books>

 <book id=“1”>Text</book>

</books>

36

Error: Attrinute id must

be unique!

Error: The value of an ID

attribute type must begin

with a letter!

Markup Languages

Example

example.dtd:

 <!ELEMENT shelf (EMPTY)>

 <!ATTLIST shelf

num (first|second) #REQUIRED>

Valid:
<shelf num=“first”/>

<shelf num=“second”/>

No valid:
<shelf num=“third”/>

37

Error: Attribute value is

incorrect!

Markup Languages

Entities

Some characters have a special meaning in XML, like

the less than sign (<) that defines the start of an XML

tag.

Most of you know the HTML entity: " ". This "no-

breaking-space" entity is used in HTML to insert an extra

space in a document. Entities are expanded when a

document is parsed by an XML parser.

Example:

& = &

< = <

> = >

 38 Markup Languages

PCDATA

PCDATA means parsed character data.

Think of character data as the text found between the

start tag and the end tag of an XML element.

PCDATA is text that WILL be parsed by a parser. The

text will be examined by the parser for entities and

markup.

Tags inside the text will be treated as markup and

entities will be expanded.

However, parsed character data should not contain any

&, <, or > characters; these need to be represented by

the & < and > entities, respectively.

39 Markup Languages

CDATA

CDATA means character data.

CDATA is text that will NOT be parsed by a parser.

Tags inside the text will NOT be treated as markup and

entities will not be expanded.

40 Markup Languages

